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SOME  SEARCH PROBLEMS WITH FALSE  CONTACTS 

James M.   Dobbie 
Arthur D.   Little,   Inc.,  Cambridge, Mass. 

ABSTRACT 

Some search problems are described and discussed, 

starting with the case of no false contacts, to pro- 

vide a foundation for the development of a search 

theory in the presence of false contacts.  Important 

properties of the search plan are defined and illus- 

trated by examples. After a general description of 

false contact generators and alternative actions 

that may be used when contacts are made, the problem 

is formulated for the case in which false contacts 

are generated by real stationary objects that are 

investigated when contacted. It is shown that the 

formulation and solution of the standard optimiza- 

tion functionals are contingent on the number of 

false targets found, in general, and possibly on the 

locations and times of contact as well. The optimi- 

zation functional is difficult to write and more 

difficult to solve.  The formulation is made for the 

expected-time functional when the number of false 

targets is limited to finite values. The solution 

is outlined and illustrated with an example. 

If the region being searched is known to contain exactly one target and 

no false contacts occur, the formulation of the criterion for the proba- 

bility of detection with a given effort, or for the expected effort (or 

time) to find the target, is an easy problem. Also, the solution is not 

difficult. If the region contains real objects, other than the target, 

that can generate false contacts, or if false contacts occur from random 

Work on this project was supported by the Office of Naval Research 
under Contract No. N00014-71-C-0313. 
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fluctuations,   the optimization criterion may be difficult to  formulate 

and very difficult   to solve.    We demonstrate this fact by formulating 

the criterion for a class of false contacts, and solving the optimization 

for a particular example. 

The first serious attempt to develop a theory of search in the presence 

of false targets is   that of Stone and Stanshlne  [4].    They assume that 

false contacts are  generated by real objects  that can be marked, when 

located and identified,  so that they will not require Investigation 

should they be contacted again.    They use a special set of assumptions 

that permits the expected-time criterion to be formulated without in- 

cluding the possibility that the optimal search plan may depend on the 

number of false targets that have been found and eliminated.     We show 

that the optimal search plan does not have  this property,   in general; 

and that the expected-time functional,  or the probability functional, 

is difficult  to construct,  and more difficult to solve.     The formulation 

and solution have been obtained for some particular cases,  and a method 

for the formulation and solution has been outlined for other cases.     The 

general problem remains unsolved. 

Some special properties of the optimal solution are discussed in section 1, 

starting with the case of no false contacts.     The general false contact 

search problem is  discussed in section 2 and the problem in which false 

contacts are generated by real stationary objects is discussed in sec- 

tion 3.     Conditional detection functions and posterior false  target dis- 

tributions are developed in sections 4 and 5.    After a discussion of 

optimization criteria in section 6,   the problem is formulated for the 

expected-time criterion in section 7 and solved for a simple  two-cell 

problem in section  8. 

1.    Additivity,  Consistency,  and Contingencies 

We start with a discussion of some properties of the optimal search plan 

when the region contains one, and only one, target and no false contacts 

occur.    Koopman  [3,   p.  617]   describes a property of the optimal search 
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density function that depends on the optimization criterion, as well as 

the conditional detection function.  It states that the optimal search 

density function that maximizes the probability of detecting the target 

with a given total effort E + E , for positive E and E , is the sum of 

the optimal density function for E- and the conditionally optimal density 

function for E-, applied in the order E.. followed by E„. The condition- 

ally optimal density function for E is the optimal density function for 

E-, given that the target has not been found with the previous search 

effort E.. distributed optimally. If the optimal search density function 

satisfies this condition for all divisions of the total search effort, we 

say that it is additive, or that it has the additivity property.  If the 

optimal search density function is additive, we can apply the effort 

piecemeal, optimizing conditionally for each piece, and the total effort 

will be optimally distributed. 

The optimal search density function usually has another property that 

sometimes is confused with the additivity property.  Suppose that the 

effort E1 has been applied unsuccessfully according to the plan that is 

optimal for the effort E.. + E- and we pause to replan the remainder E„ 

of the search effort.  If the optimal search plan for the remainder is 

the same as it is in the original search plan and this holds for all 

divisions of the total effort, we say that the optimal search plan is 

consistent, or that it has the consistency property. 

As the search proceeds, various events may occur as results of the search, 

and otherwise. The optimal search plan may depend on these contingencies 

or be independent of them.  An obvious contingency is the state of the 

target detection. Since there is exactly one target in the region being 

searched, we assume that search stops, if the target is found.  Search 

continues only when the target has not been found (and perhaps not then). 

Thus, the continuation of search is contingent on the target not being 

found.  If the search plan is independent of all contingencies other than 

the state of target detection, we say that it is contingent-free. 

Arthur D Little, Inc 



The additivity, consistency, and contingent-free properties are not iden- 

tical. The additivity property says that we can't improve the search 

plan by planning the distribution of the entire effort at the start, 

rather than doing it piecemeal. The consistency property says that, if 

we plan optimally, no improvement can be made after part of the search 

has been made, by considering the results of the searching done thus far. 

The contingent-free property says that the only contingency that we need 

to consider in planning the search is the state of target detection. 

If the contingencies are limited to the state of target detection and the 

region is known to contain exactly one target and no false targets, the 

consistency property is a consequence of optimality, provided the optimal 

search plan is followed exactly and the "pause" is conceptual only. When 

a conceptual pause is made to replan the search the only available infor- 

mation is that the target has not been found with the effort applied thus 

far, which is the condition assumed to hold for the continuation of search. 

If the optimal search plan has been followed exactly, as assumed in plan- 

ning the search, no information is available when the pause is made that 

was not available when the original plan was constructed. Hence, if the 

plan is optimal, it is consistent, under these conditions. 

Optimality also implies consistency when we admit other contingencies, 

provided that they can be foreseen and included in the search plan. For 

example, if the region contains one false target in addition to the one 

target, the optimal search plan may depend on the state of detection of 

the false target, which can be included in the search plan. Thus, the 

optimal search plan is consistent, but not contingent-free, in this case. 

The optimal search plan might not be consistent when a pause of positive 

duration is made. For example, suppose that a golfer, while looking for 

a lost ball, tramples the ground and hits weeds with his club and then 

sits down to rest and plan his further search. If he doesn't sit too 

long, the position of the ball will not be changed, and the grounds and 

weeds will be in essentially the same state when he resumes searching 

Arthur D Little, Inc 

  • '        



as they were when he sat down to rest. However, the conditions of the 

grounds and weeds could be altered considerably in an interval of days, 

by partial recovery or by changes of the type produced by a thunderstorm. 

Also, in a long interval the position of the ball could be changed or the 

ball might be removed from the region entirely. 

We avoid these difficulties by assuming that the target is stationary and 

the conditional detection function has an additive property. Let m(x) be 

the search density at a point x of the region R, assumed to be Euclidean 

n-space. Assume that the conditional detection function, called the local 

effectiveness function by Stone and Stanshine [4], is a function b(m(x)) 

of the search density function alone.  (We could assume that b is a func- 

tion of x, as well, but the gain in generality is slight.) Thus, b(m(x)) 

depends only on the total density m(x) and is not affected by the passage 

of time during which no searching is done. We assume that b(m) has the 

usual properties of a probability function. For convenience, we also 

assume that it has a derivative that is positive, continuous, and strictly 

decreasing. 

Assume that we search with density m.. (x), do not find the target, and then 

search with the additional density m-(x). Let 

b(m (x)Im-(x)) = conditional probability of detecting a target 

at x with a search of density nuCx), given 

that it was not detected by a previous search 

of density m (x) 

By conditional probabilities we have 

bdn^x) + m2(x)) = bdyx)) + [l-bCm^x))] b(m2(x) Im^x)) 

from which we obtain the equation 

b(m1(x)+m2(x))-b(m1(x)) 

bO^Wlm^x)) i-bdn^x)) (1) 
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Let f(x) be the density function for the target in the region R. Then 

the probability of detection WJ-JI the search density function m1 (x) fol- 

lowed by m9(x) is 

Pdrij+n^) = / f(x)b(m1(x)+m2(x))dx (2) 
R 

The global conditional detection function P^lm.), given that the target 

was not detected by the search of density m.. (x), is obtained by an equa- 

tion analogous to equation (1) for the local conditional detection func- 

tion. 

Equation (2) shows that P(m) is an additive functional of m. Put 

ß(m(x)) = l-b(m(x)), ß(m2(x)lm1(x)) = l-b(m2(x)|m1(x)) 

Then equation (1) takes the simpler form 

ß(m2(x)|m1(x)) = ßdn^x) + m2(x))/ßCm^x)) (l') 

We say that (3  is additively dependent on the previous  searching effort 

when equation  (1 ) holds. 

In some search problems a contingency may occur that prevents the use of 

equations   (1)  and (2) when m  (x)   is applied before the contingency occurs 

and m9(x)   afterward.    For example,   suppose that we are searching for an 

object that was lost in the sand on a beach that is exposed,   and avail- 

able  to be searched, only at low tide.    The effects produced by digging 

and sifting are undisturbed while  the tide is out, but are undone by the 

next high  tide.    The conditional detection function is additive for the 

search that is made during any one low tide, but not  for two low tides. 

If we assume that searches of densities m1(x)  and nuCx), made in two low 

tides are  completely independent,   equation (2)   is replaced by 

Pdi^,  m2)   = 1-[1-P(m1)][l-P(m2)] (3) 

where the  detection probability P now is a functional of  the two density 

functions,  m    and m„. 

Arthur D Little, Inc 
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A different equation is obtained if we assume that the target location 

is not changed by the action of the high tides, that we can locate the 

density ra2(x) relative to m.(x), and that the local conditional detec- 

tion function in the second low tide is the same as that in the first 

low tide. Then equations (1) and (2) are replaced by 

b(m2(x)|m1(x)) = b(m2(x)) 

Pdi^, m2) » 1 - J f(x)[l-b(m1(x))][l-b(m2(x))]dx 

(4) 

(5) 

Here, m.. (x)   is  the density of effort during the first low tide and m (x) 

is the density of effort during the second low tide; no other division of 

m. (x) + m9(x)   can be used in equations   (A)   and  (5).    When the conditional 

detection function satisfies equation  (4) we say that it is independent 

of the effort  in the previous stages. 

Another search problem of  this type is  that of an integrating detector 

that recovers  rapidly between successive "looks" at targets.    While a 

target is in the beam of  the detector  the signals received by the de- 

tector are additive;   the response of  the detector to one look at a target 

depends only on the sum of the signals  received in that look.    However, 

the conditional probability of detecting a target at x in a second scan 

of the target space is obtained from equation   (4),  assuming complete 

recovery of the detector.     The probability of detection in two scans of 

the sensor, with densities m (x)   and m„(x),   is obtained from equation  (5). 

Equations  (4)   and  (5)  were assumed by J.  M.   Danskin  [1].     The conditional 

detection function b(m)   is additive in each separate stage  (low tide in 

the beach problem and scan for the integrating detector),  but is not 

additive for two or more stages.     The problem of maximizing P(m ,  m )   in 

equation (5)   for a given total effort is not essentially different from 

the problem of maximizing P(m) when it satisfies equation  (2).     If  the 

effort is specified for each stage,   the problem can be solved by Dynamic 

Programming or by a method devised by Danskin. 

Arthur D Little, Inc 
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Although the optimal search plan  Is not contingent-free,   the contingency 

for  the beach problem and  for the integrating detector can be foreseen 

and included in the search plan.    Again,   the optimal search plan is con- 

sistent,  provided it is  followed exactly. 

If  the optimal search plan is not followed exactly, we may be able  to 

improve the search plan by replanning at intervals,  provided we can 

determine and record the actual search density that has been applied. 

It  is well known that the actual effort distribution does not coincide 

with the planned distribution,   and sometimes the difference is large. 

Also,   it often is difficult to determine what distribution has been ap- 

plied,   and to make provisions  for recording this  information and using 

it  in replanning.    We will return to this question  in formulating  the 

false  target problem. 

If b(m)  is the negative exponential function, b in equation  (1)  also is 

the negative exponential  function,  and equation  (4)   is satisfied.     The 

negative exponential function is  the only probability function with this 

property.    For this conditional detection function the probability func- 

tionals  (2)  and (5)  are identical.    DeGuenin  [2]   replaced the negative 

exponential function by more general functions that are additive and 

hence satisfy equation  (1), while Danskin  [1]  generalized by assuming 

equation  (4). 

2.     The False Contact Search Problem 

We start with a general discussion of false contacts and problems  that 

are produced by the false  contacts, before restrlc ting the discussion to 

false contacts that are generated by real stationary objects. 

False contacts may be generated by real objects  that can't be distin- 

guished from the target with certainty, except by a close inspection. 

For example,  in search by active sonar for a submerged submarine some 

possible generators of false contacts are wrecks on the bottom, sea 

mounts and bottom irregularities that reflect sound waves, whales,  other 

marine life,  and decoys   (including bubble clouds produced by the inter- 

action with water of chemicals expelled from the target submarine). 
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False contacts also may be Renerated by anomalies or variations   (usually 

called noise)   in the  signal response,   produced by fluctuations  in the 

performance of  the detection equipment  and fluctuations  in the medium 

through which  the energy passes. 

When a contact is made  the searcher may decide  to take no immediate 

action, while continuing to observe the contact indication;  or,   decide 

to stop searching and investigate  the  contact;   or,  decide to proceed 

with appropriate action,  on the assumption that the contact is  the  tar- 

get.     If no immediate action is  taken,   the searcher may decide later  to 

investigate the contact or to  take some other action.    Under combat con- 

ditions it may not be feasible to investigate  the contact;   the searcher 

can ignore the contact,  attempt to maintain contact, or make an attack. 

As the search proceeds the searcher may obtain additional information on 

the generators of false contacts,   their  types,  numbers,  and locations. 

Some of the information will be obtained by  direct observation and some 

of it by deduction.     For example,   the number and locations of contacts, 

and the times at which the contacts were made,  can be observed and re- 

corded.     Also,   results of investigations,  if made, would be known.     In- 

ferences can be made about the number and location of false targets not 

contacted,  under some conditions,   from the observed results. 

The searcher may be able to use some of the additional information in the 

continuation of the search.     In general,   the extent to which he can do so 

will depend on the  contingencies  that have been anticipated and provided 

for in the search plan,  and the availability of the required information. 

For example,   the searcher may be using a search plan that anticipates  the 

finding of real objects that generate  false contacts.    Each time such an 

event occurs  the search plan may change in a way that requires  the esti- 

mation of the posterior distribution of residual false targets.     The 

posterior distribution of residual false targets depends on the distri- 

bution of effort that the searcher has applied up to that epoch.     The 

applied distribution of effort almost always  differs from the planned 

distribution,   and often by large amounts.    Hence,  to estimate the posterior 

Arthur D Little, Inc 
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distribution of residual  false targets under realistic assumptions It Is 

necessary  to record the actual distribution of search effort.     If no pro- 

vision is made for the collection of  this Information and  for its use in 

computing the posterior distribution,  a different search plan must be 

used.     (In this connection we observe that a search plan  that requires 

the effort to be distributed in  time,  as well as in location, would re- 

quire continuous feedback from the actual search distribution to the 

search plan, and would be very difficult to implement.) 

The above discussion of the false contact search problem has been made 

to provide a proper perspective,  by showing the complexity of the general 

problem before turning to a special case.    False contacts may be generated 

by real objects and by random fluctuations.    Real objects may be station- 

ary or moving,  and may or may not be identifiable.     Various action options 

are available to the searcher when contacts occur.     Additional information 

that becomes available as  the search proceeds may be used to Improve the 

search plan, provided the search plan Includes  the relevant contingencies. 

It is evident that a mathematical abstraction that includes all the possi- 

bilities would be very complicated.    We start with a special case that 

illustrates some of the difficulties. 

3.     False Contacts Generated by Real Stationary Objects 

Stone and Stanshlne  [4]  assume that false contacts are generated by real 

objects  that can be marked,  when located and identified,   so  that they 

will not  require investigation should they be contacted again.    They also 

assume  that the false contacts are generated as an inhomogeneous Poisson 

process.     We generalize the Stone-Stanshlne model in several respects. 

We assume  that exactly one stationary target is known to be in a region 

R of Euclidean n-space, with known location density function f(x).  During 

the search,  false contacts may be generated by other real objects in R, 

called false targets, which can't be distinguished from the target except 

by a close inspection.    The number of false targets  in R may be known,  or 

unknown with a known number density function.    We assume  that the false 

10 
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targets are independently distributed with known location density func- 

tions.    They may be identically distributed with common location density 

function g(x),  or otherwise.     Our assumptions are more general  than  those 

of Stone and Stanshine, who explicitly introduce only the collective loca- 

tion density function 6(x).    Other properties of the false target popula- 

tion must be inferred from the assumptions on false contacts,  by means of 

which one can deduce that their number density function for false  targets 

is the Poisson function. 

If a contact  is made,   the search will be interrupted,  an investigation 

will be started,  and continued until  the contact has been identified.     If 

the contact  is  the  target,   the search will be stopped.     If the contact is 

a false target,   its location will be recorded and the position marked, 

perhaps with a buoy,  so that another investigation will not be made, 

should it be contacted again.    Then search will be resumed. 

Under these  conditions the optimal search plan may depend on the number 

of false targets that have been found and eliminated,   since the distribu- 

tion of  the  residual  (undetected)   false targets may be changed as  false 

targets are  found and eliminated.    Hence,   in formulating the search prob- 

lem and writing the expression for the optimization functional we. should 

include  the number of found false targets  as a contingency,  unless we can 

demonstrate in advance that  the optimal search plan is independent of the 

number of  found false targets. 

Stone and Stanshine   [4]  formulate their search problem and write an equa- 

tion for the expected time to find the target under  the implicit assump- 

tion that  the search plan does not depend on the number of found false 

targets.     They solve this problem and then undertake to prove that  their 

solution has  the assumed property.     We question the validity of this 

argument.     The expected-time functional when the search plan is assumed 

to be contingent on the number of found false targets is not  the same as 

(or even remotely similar to)  the corresponding functional when the search 

plan is assumed to be independent of  the contingency.     Hence we have no 

assurance  that we are optimizing the correct functional unless we can show 

11 
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in advance that the optimal search plan Is  independent of the number of 

found false targets.     For  the special conditions assumed by Stone and 

Stanshine a prior proof can be made,  as shown in section 5 below. 

The posterior proof given by Stone and Stanshine is  Incomplete.     In sec- 

tion 4,  they use "additlvlty" to describe the properties that we call 

"consistency" and "contingent-free".     They state that the optimal plan 

is  to continue with  the original search plan,   if at any time before the 

target has been found it  is decided to replan the search to minimize  the 

expected time remaining to find the target.     To show this they examine 

two contingencies,   as  follows: 

(a) No contact has been made, 

(b) A contact has been made and not Investigated. 

But  these contingencies are included in the formulation of the problem 

and it was proved in section 3 of their paper  that  immediate contact 

investigation is optimal.     If it were possible to  improve the search plan 

under contingencies   (a)   and  (b),  the search plan would not be optimal. 

On the other hand,   they  fail to consider the  contingency 

(c) A contact has been made,  investigated,  and found to be 

false. 

Since this contingency was not Included in the original formulation,   the 

search plan that is optimal when it is not included conceivably could be 

improved by including it.     Only for the overlooked contingency  (c)   does 

optimality not imply consistency. 

4.     Effort Distributions and Conditional Detection Functions 

It will be convenient to use a notation that permits  the search density 

function to change each time a false target is found.    Let 

s1 = search time at which the first contact is made, 

y (x,s) = search density at x by search time s,  0 _< s _< s.. 

12 
■ 

Arthur D Little Inc 

L. .■■    .. ,.^..-,^„ .,-.„ - ■-..-.....^^»^^-^^^ ^.^„^^^^.^...^^^^^aat^^ 



If the contact is a false target and search is resumed, let 

8_ " additional search time In the second stage, measured 

from the resumption of search until a second contact 

is made, 

Vi„(x,s) = additional search density at x by the additional 

search time s in the second stage, 0 £ s ^ s„. 

In general, let 

s,     = additional search time to make a contact in the i 
i 

stage of the search, 

p.(x,s) = additional search density at x by the additional 

search time s in the i  stage, 0 j^ s _< s.. 

We assume that y.(x,0) = 0 and that p,(x,s) is nondecreasing in s for 

each i and for every x in R. The total effort density at x in the first 

j stages is 

j 
M,(x) = Vy (x,8 ) (6) 
J     i=l 1   1 

At additional  search time s  in the j       stage, after  (j  - 1)   false tar- 

gets have been found,   the total search density at x is 

m.(x,s)  = M      (x) + UjU.s) (7) 

We call attention to the fact that M. (x) = m.(x,s ) in our notation. 

Thus, capital M is used for the value of m when contact occurs. The 

variable s is used for the additional search time; the total search 

time S corresponding to the additional search time s in the j  stage 

is S = s1 + s? + ... + s 1 + s. 

The total effort that has been applied in the additional search time s 

in the j  stage is 

(s) = J y.(x,s) dx 

13 
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and the total effort W  (S)  from the start of search Is 

W   (S)   - W   (8)   +   ]£   w   (s.)    , 
J J i-1   1   1 

i-1 

th Then we can impose the condition that the effort in the J      stage,  or 

the total effort,  is a known function of the search time.    For example, 
t*Vi 

the condition that effort is applied at a constant rate U.  in the j 

stage is 

WJ(S)  = S UJ 
(8) 

We assume that the conditional probability that a target at x will be 

contacted when an effort of total density m(x) is applied at x is a 

function b(m(x)), called the local effectiveness function by Stone and 

Stanshine, of the total density m(x), however it is applied.  We assume 

that b(0) = 0, lim b(u) = 1 as u -*■ ", and that the derivative b'Cu) is 

positive, continuous, and strictly decreasing.  Some of these properties 

can be relaxed or omitted under some conditions. 

We obtain the conditional contact function at x for the j  stage, given 

that the effort of density M . (x) was applied in ehe  first j - 1 stages, 

by using our assumption that b is a function of the total density.  Let 

b (x,s) b(y.(x,s)|M. ,(x)) = conditional probability that a 

target at x will be contacted by the additional effort 

of density y (x,s) in the J 
th stage, given that it 

ffort of densit; 

that has been applied In the previous stages. 

hasn't been contacted by the effort of density M._-(x) 

Put 

6(m(x,s)) = 1 - b(m(x,s)), ß.(x,s) = 1 - b (x,s) 

i 

By the argument used to obtain equations (1) and (1 ) we have 

ß(M,(x,s)+M, .(x)) 
ßjCx.s) = J_ 

ßCMj^x)) (9) 
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Let a(u) be the conditional contact failure  function  for false targets, 

corresponding to 3(u)   for the   target.    Then the  conditional contact 

failure f 

equation 

failure probability a  (x,s)   In the J      stage is obtained from the 

a(p  (x,8)+M    1(x)) 
aJ(x's) aCM^x))  (10> 

5.     Posterior False Target Distributions 

We assume, at the start,   that  the search effort distribution is known 

exactly.    Also, we assume that  the false targets are  Independently dis- 

tributed in R,  and we  restrict attention to the case in which they are 

identically distributed with known location density function g(x)  and 

known number density function p(n).    We want to find the posterior loca- 

tion density function g.(x,s)   and the posterior number  density function 
^ th p,(n,s) at the time s after the start of search in the j      stage,  given 

that J-l false  targets have been found and eliminated. 

Under the assumed conditions we can obtain the posterior location and 

number density functions by  the direct application of conditional prob- 

abilities, sometimes referred to as Bayes'   theorem.     We could do  this 

for  the j      stage directly.     However, we prefer  to proceed step by step 

from the start of search in  the first stage to  the start of search in 

the second stage,   to see how  the distributions  change as information 

becomes available.     By repeating the argument we can obtain the distri- 

butions for any desired stage. 

In the first stage  the probability that a false target chosen at random 

is not contacted in search time s is 

Q (s) - /   g(x)a(y   (x,s))  dx (11) 
R 

for 0 < s £ s-.  The posterior location density function for false 

targets is 

^(x.s) = g(x)a(y1(x,s))/Q1(s) (12) 
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and the posterior number density function is 

00 

i^Cn.s) =• p(n)Q" (s)/   E P(i)Q{ (s) , n = 0, 1, 2, ...      (13) 
1=0 

by the direct application of conditional probabilities. 

Assume that a contact is made at location x..  and search epoch s-,  in- 

vestigated,  and found to be false.    This event has no effect on the 

location distribution of the unlocated false targets,   since they are 

assumed to be  independently and identically distributed;   their location 

density function is g (x,s )  at  the start of search in the second stage. 

However,   the event may have an effect on the number distribution.    Define 

the event A to be 

Event A:     a false target is at x.   and is contacted at search 

epoch s1; no other contacts are made in search 

time s.. 

Let 

P{A|n+l}  = probability of event A,  given that there were 

n+1 false targets initially in R 

To obtain the probability  that a false target is "at x " and is  con- 

tacted "at search epoch s", we need  to define the terms  in quotation 

marks.    We say  that a false  target is at x ,  if it is  in an arbitrarily 

small Interval dx centered at x ;   and that it is contacted at epoch s., 

if it is not  contacted in search time  s    and is contacted in the arbi- 

trarily small  interval  (s  ,   s1  + ds).     Then,  to first order terms in dx and ds, 

P{A|n+l} -  [(n+DgU^dxj ^(s1)a(y1(x1,81))]  [a^^s^-a^U^+ds))]     (14) 

The  first quantity in square brackets  is the probability  that a false 

target is at x ,  the second is  the probability that none of the n+1 

false  targets  is contacted in the search time s.,  and the  third is the 

probability that the false target at x    is contacted in the interval 

(s-,   81 + ds). 
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The probability  that   there are n residual   false  targets In R at   the 

start of fipar'Th  in  the second stage,  given  that one has been contacted 

at x1   at epoch s    and eliminated,  is 

OS 

p,(n,0) = p(n+l) P{A|n+l} / E p(i+l) P{A|i+l} , 
^ i-0 

from which we obtain 

p (n,0) = (n+l)p(n+l) Q" (s )/  D (i+l)p(i+l)Q| (s ), n ' 0,1,2,... 
i-0 

We have divided numerator and denominator by common factors. 

(15) 

We now have completed one cycle,  and can repeat the above argument  to 

get g (x,s) and p  (n,s).    The location density  function of unlocated 

false targets at  the start of search in the second stage is 

g2(x,0) = g1(x,s1)   , (16) 

which can be obtained by putting s = s.   in equation  (12).    Using condi- 

tional probability arguments we obtain 

g2(x,s)  = g2(x,0)  a2(x,s)/ Q2(s)   , 

where a-(x,s)  is obtained from equation  (10)   and 

Q2(s) = /R g2(x,0) a2(x,s)dx = Q2(s)/Q1(s1) 

(17) 

(18) 

Q2(s) = JR g(x)a(u1(x,81) + y2(x,s)) dx (19) 

The second equality in (18) is obtained from equations (10), (12), and 

(16). Substituting from equations (16), (10), and (18) we obtain from 

equation (17) the posterior location density function 

g2(x,8) - g(x)o(y1(x,81) + p2(x,s))/Q2(s) (20) 

Similarly, the posterior number density function at additional search 

time s in the second stage is 

P2(n.8) = p2(n,0)  [Q2(S) ]n /     E P2(i,0) [Q2(8) ] 

17 

Arthur D Little, Inc 

■^ •■■■"—"-,"~; ■MMM i^^ turn 



Using equations (15) and (18) we obtain 

p (n.s) » (n+l)p(n+l) Q^s)/ E (l+l)p(l+l)Q,(8), n - 0,1,2,...  (21) 
i-0 ^ 

By Induction we obtain the location and number density functions for the 

J      stage, given that j-1 false targets have been found and eliminated. 

The location density is 

g  (x,s)  =  g(x)a(m  (x,s))/Q  (s) (22) 

and the number probability density is 

p^n^s)  =  (n+l)(n+2)...(n+j-l)p(n+j-l)Q"(s)/Ej(s),  n-0,1,2,...   (23) 

where 

and 

Q.(s)  = /D g(x)oi(m.(x,s))  dx (2A) 
J K J 

00 

V   (s) =     E   (i+l)(i+2)...(i+j-l)p(i+j-l)Q^(s) (25) 
^J i-0 j 

The location density function g.(x,s)  depends on j   in a superficial way, 

since j   is involved only in the  total effort density function m (x,s) 

that has been applied.     The same  location density function would be ob- 

tained for a given total effort density function,   regardless of the 

number of stages and the distribution of effort among stages.    However, 

p,(n,s)   in equation (23)   depends on j  in a fundamental way,   in general. 

An exception is that in which p(n)   is a Poisson function, 

... -N „n,    , 
p(n)  = e      N /n I 

having expected value N,   say.    Then p.(n,s)  in equation  (23)  reduces to 

-NQ,(s) 
p  (n,s) = e      J INQ (s)J   /n  I   , 

the Poisson density function with expected value NQ  (s).    Here, again, 

j   is Involved in a superficial way. 
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If p,(n,s) depends on J only with respect to the total effort density 

function m (x,s), it is not necessary to change the search plan each 

time a false target is found and eliminated. The Poisson density func- 

tion has this property. It is the function assumed (implicitly) by 

Stone and Stanshine [4]. Are there other density functions that have 

this property? 

Equations (22) and (23) apply when the false targets are independently 

and identically distributed, with known location density function g(x), 

and known number probability density function p(n); and we search with 

density function m (x,s), and known local effectiveness 

) = 1 - a(m).  Important search problems occur for which at 

these assumptions is not valid. 

known aearch 

function a(m 

least one of 

For example, suppose that the false targets are wrecks that are accu- 

rately located in earth coordinates, while the searcher's position is 

not accurate^.y known in earth coordinates.  Then the false targets are 

not independently (or identically) distributed relative to the searcher, 

of a found false target yields information on the location 

false targets, and this information may be sufficient to 

locate the otfher false targets with an accuracy that would permit them 

to be avoidec in further search. 

The location 

of the other 

The region R 

and bottom ir 

mine the clas 

that it is no 

investigation 

may contain several classes of false targets, such as wrecks 

regularities.  If the investigation is sufficient to deter- 

s to which the false target belongs, as well as the fact 

t the target, we can treat each class separately.  If the 

only establishes the fact that the contact is not the 

probabilities 

target, the formulation is more complicated; we need to estimate the 

that the false target belongs to the various classes from 

the collectlvä class densities at the location and time of contact. 

Equations (22} 

probability 

m,(x,s) that 

and (23) for the location density function and the number 

density function require that we know the search density 

as been applied.  In many search problems it Is difficult 
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to determine m. (x,s)   accurately,  even when provision is made for  the 

recording of  the  tracks of   the searchers.     If m (x,s)   is not known,  we 

can't apply the Bayesian arguments used to get equations (22)  and (23). 

Even when provision is made   to record the  tracks of  the searchers,   there 

may be a large uncertainty about m.(x,s), which then should be treated 

as a stochastic,   rather than a fixed,   function.    Usually we assume that 
■ff 

m.(x,s)  is equal  to  the planned density m (x,s), without any means of 

measuring and recording the actual distribution. 

If  the uncertainty in m. (x,s)  can be expressed in the form of a density 

function for one or several parameters,  an argument similar to the one 

used to derive equations  (22)  and (23) perhaps could be made to obtain 

replacements  for these equations.     If no record of m (x,s)  is kept, 

there appears  to be no reasonable alternative  to the use of equations 
* 

(22)  and (23) with  the planned density m (x,s). 

6.    Optimization Criteria 

It usually is assumed  that  the general objective of  the search is to 

find the target quickly.     Two precise criteria that are obtained from 

this general objective are: 

(1) To maximize  the probability P(t)  of finding the target 

by a given elapsed time t; 

(2) To minimize  the expected time to find the  target. 

An objection that can be raised to the second criterion is that it 

assumes implicitly that search will be continued until the target is 

found,  a condition that the searcher will not always adhere to in prac- 

tice, even when he accepts  it as a condition in planning the search. 

Also,   there is a possibility that our assumption that there is a target 

in R is not valid. 

When no false targets are present we can reconcile  the two criteria. 

If a search plan exists that maximizes P(t)   for all t,  it minimizes 

the expected time  to find  the target.     Such a plan exists when no 

false targets are present.     Of course,  it is much more difficult to 
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lay out a practical searclt plan tha t approximate s the distribution of 

the ideal solution when trying to maximize P(t) for all t than when tr y­

ing to maximize P(t) for a single value of t. 

When false targets are present we have no assurance that a plan exists 

that maximizes P(t) for all t. In section S of their paper [4] Stone 

and Stanshine exhibit an example for which the search plan that maximizes 

P(t) for a particular value of t does not coinc i de ~i th the search plan 

that minimizes their integral ~(m) for the expected time, from which they 

conclude that no plan maximizes P(t) for all t, since such a plan must 

coincide with the plan that minimizes the expected time. However, they 

do not write an equation for P(t) or for the expected-time functional, 

say t(m), that is obtained from P(t). To complete the argument it is 

necessary to prove that t(m) = ~(m) for all m, since these two func­

tionals are derived by quite dif f erent arguments and do not appear to 

be identical. A proof that is s i mple, n t not obvious, can be made. 

The optimization functional is di f ficult to write for both criteria when 

false targets are present. In the next section we show how to construct 

the expected-time functional when the number of false targets is a known 

finite number n, and we outline an optimization procedure. An obvious 

modification of the procedure can be used when the number is not known 

but has a density function p(n) that is restricted ·. O finite values, 

that is, there exists a K such that p(n) = 0, n > K. The problem has 

not been solved for non-finite distributions. 

We also have examined the formulation for criterion (1), that of maxi­

mizing the probability of detection by a given time. The problem appears 

to be as difficult as, and perhaps more difficult than, the problem for 

criterion (2), which is a better reason for starting with the expected­

time criterion than the fact that no plan maximizes P(t) for all t. 

7. Expected-Time Criterion 

We start with the expected-time criterion (2). Our search procedure is 

as follows: 
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a. Search until a contact occurs, investigate the contact 

until it is identified. 

b. If the contact is the target, stop the search. 

c. If the contact is a false target, record the location 

and mark the site so that investigation will not be 

repeated, should this false target be contacted again. 

Increase the number of found false targets by 1 and 

use the fact that a false target has been found and 

eliminated to adjust the number probability density of 

residual false targets and the location distributions 

of residual false targels, to the extent possible. 

Then continue the search. 

d. Repeat the above steps until the target is found. 

If the initial number n of false targets is known, the number of resid­
th ual false targets in the j stage is n - j + 1. Let 

th 
sj • additional search time in the j stage at which contact 

is made in that stage; 

th time to investigate the j contact, if false; 

= conditional probability that the jth contact is 

false, given that a contact has occurred at xj 

in the jth stage. 

Then the time t to contact the target is 
c 

Let 

Tn+l • sn+l 

Tn • sn+ qn(In + Tn+l) 

Tn-1 • sn-1 + qn-1(In-1 + Tn) (27) 
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Then tc • T1 and the elapsed time t to find the target is t • tc + I, 

where I is the time to investigate the contact that is the target. 

The expected time to find the target is t a t + I. Since I is indepen­
c 

dent of the search plan, we minimize t • The expected time t to contact 
c c 

the target is obtained by averaging stage by stage in equations (27), 
st starting with the (n+l) stage and moving (backwards) to the first stage. 

st In the (n+l) stage there are no false targets. The density function at 
st the start of search in the (n+l) stage is 

fn+l(x) • 
f(x)S(M (x)) 

n 

where M (x) is obtained from equation (6) and 
n 

Q • J.R f(x)S(M (x)) dx 
n n 

* 

(28) 

(29) 

We now find the function ~n+l(x,s) that minimizes the ex~ected value of 

sn+l' which is a solved problem. The optimal function ~n+l(x,s) is the 

function ~n+l(x,s) that minimizes the failure probability Qn+l(s) for 

all s, where 

-1 
Q +l(s) = Q n n 

l f(x)S(~ +l(x,s) + M (x)) dx 
R n n 

(30) 

* Let Qn+l(s) be the*function Qn+l(s) when ~n+l has been replaced by the 

optimal function ~n+l' and put 
00 

T:+l = Jr0 Q:+1(s) ds 

* Then Tn+l is the minimum expected time to contact 

(n+l)St stage. From equations (6) and (30) it is 

depend on the previous density functions ~j(x,s) 

which previous contacts were made, j • 1, 2, ••• 

the target in the 

* seen that Tn+l may 

and the times sj at 

, n. 

(31) 

th In the n stage we minimize the expected time remaining to contact the 
st target, on the assumption that the search procedure in the (n+l) stage 

will be optimal. Hence, we minimize the expected value of 
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s + q (I + T _.,) = T (8 , u ) 
n  Mn n   n+1    n n  n 

(32) 

That is, we find the function y (x,s) that minimizes ^(s^, v^)  over sn, 

given that there is one false target and one real target in R. The ex- 

pected value is computed over the probability distribution of the false 
it 

contact time s , noting that q and T . (and possibly I) depend on 

s and y , in general.  This is not a solved problem. We have solved it 
n    n 
in special cases used as examples, one of which will be shown later. 

Assume that the above problem has been solved and let T be the minimum 
n 

value of the expected value of T (s , y ). Then in the (n-l)S stage we 
n n  n 

minimize the expected value of 

s  . + q  .(I . + T*) = T  .(s  ., y  .) 
n-1  nn-l n-1   n    n-1 n-1  n-1 

(33) 

This problem is similar to the optimization problem in the previous stage, 

except that there now are two false targets. Also, the functional form of 
* * 

T is more complicated than that of T .. 

Continuing in the way outlined above we find the functions y -(x^), 
* * n+i 

y (x,8) ... , y.(x,s), which constitute the optimal solution, in the sense 
n 1 

of minimizing the expected time to find the target when all the available 
* th 

information is used. The function y.(x,s) in the j  stage may depend on 
*  *       *    J 

the functions y1, y_ y , and the contact times s-, s^, ... , s , 

in the previous stages.  These functions and times will be known when 
th * 

search is resumed in the j  stage.  The optimal function y.(x,s) in the 
f h 

j  stage is found under the assumption that search in the later stages 

will be optimal. 

If the initial number n of false targets is not known but has a finite 

distribution, we can apply a similar procedure to find the solution. If 
st 

the maximum value of n is K, thera are no false targets in the (K+l) 

stage.  In the K  stage the possible number n^ of residual false targets 

is 0 or 1.  If IL. ■ 0, q » 0 and there are no later stages.  If IU. ■ 1, 
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the problem is the same as  the problem when n is known.     We  find the ex- 

pected value of T (s  ,  y )  over  the distribution of n    before proceeding 
K    K      K K 

with the optimization; similarly for the other stages. Thus, in prin- 

ciple, we can find the optimal solution in (K+l) steps by applying the 

general principle of Dynamic Programming. 

If the distribution of n is not  finite,  the problem is more difficult. 

There now is no convenient starting place.    We do not know how to solve 

this problem. 

8.     Solution For a Particular Problem 

We find  the solution for a simple example to show the general procedure 

that is used in minimizing T  (y  ,   s ).    Assume that R consists of two dis- 
n n  n 

joint regions I and II in the plane, each having Lebesque measure 1; the 

target density function is f(x) = f for x in I, f(x) = 1 - f for x in 

II; and there is one false target, known to be in region II. Assume that 

the time required to identify a contact is 1, that the conditional detec- 

tion function is b(z) = 1 - exp(-z) for the target and false target, and 

that effort is applied at a constant rate U = 1. 

We search with density function u (x,s) until a contact is made at s = s . 

If the contact is the false target, we go to the second stage of the search 

and search with density function y (x,s), knowing there are no false tar- 

gets remaining. At the start of the second stage the conditional target 

density function has the form 

A A 

f (x) - f2 for x in I, f2(x) - 1 - f2 for x in II 

where f- is independent of x, hut  depends on y and s .  (We can obtain 

f- from equation (28) when needed.) 

The search density function y2(x,s) that minimizes the expected additional 

time s to contact the target depends on the magnitude of f . If f2 ^ 0.5, 

y. has the form: 
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¥OT 0 < B <_ sQ, y2(x,8) - 

0 for x in I 

s for x in II 

where 

For s > SQ, ^(X.S) 

s0 - InCf^1-!) 

(s - s0)/2 for x in I 

(s + s0)/2  for x in II 

From equation (30)   Q~(s)  for the optimal distribution is 

Q*(8) 

f2 +  (l-f2)e 
-s 

. sl=0 

2fJ/2(l-£2)1/2e-8/2  . s > s0 

Then 
00 

T2 "   So Q2(s>ds = 1 + f2(2 + 80) 

(If needed, we can get T   when f. > 0.5 by replacing f2 by 1 

above expression.) 

f. in the 

Write ^-(xjs) in the form 

y(s)  for x in I 

y1(x,s) 

8-y(s) for x in II 

From equation (28), f2 becomes 

-y(s ) 
f2' fie       /Qi(si' y(si^ 

where s.   is the observed time at which the  first contact was made,   and 

-y Q1(s,y)  = f^ ' + (1 -  f1)e -s+y (34) 
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Then 

s0 - 2y(s1) - 81 + In (f^
1-!) 

and we now can write T in terms of s1 and yCs^. 

To write the equation for T.. in equation (32) we need the conditional 

probability q^. that the first contact is made on the false target, given 

that the contact is made at search time s1.  The probability that the 

false target, known to be in region II, will not be contacted by search 

time s is 

%(s,y)  = e'S+y. lFv-.^  -   . (35) 

where it is understood that y = yCs) is a function of s. The probability 

that a contact will occur by search time s is 

Pc(s,y) = 1 - Q^s^) QF(s,y) 

We note that P (s,y) is the probability distribution function of s., the 

time of first contact. The rate of making contact at search time s is 

p;'dfpc(s'y(s))- 
We can write P* in the form 

c 

Pc = Ql PF + QF Pl (36) 

where 

P1 = 1 - Q^ PF - 1 - QF 

and  the prime indicates total derivative with respect  to s.    The two terms 

in the righthand member of equation (36) are the contact rates on the 

false target and the target  respectively.    If the first contact occurs at 

search time s-,  the conditional probability that the contact is made on 

the  false target is q, (s. ,y(s1)), where 

q1(8,y(s)) - Q1(8,y(s)) PpCs.yCs))/?'(8,y(s)) 
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The time ^(Sj^, u^  in equation (32) will be written in the form 

T1(81, y(81)). Then 

^(s.y) - s + Pj.Cs.y) R (s.y)/?'(s.y), 

where 

R(8,y) - f1e~
y(2y - s + 4 + InCf^-l)) + 2(1 - f1)e"

8+y 

The mean value of T1(s1,y(s )) over s. is 

00 Co 

T^y)-/ T (8,y(8))P'(8,y(8))ds - f F(s,y(8) .y« (s))ds 
0 i       c 0 

where 

F^.y.y') = G(s,y) + y' H(8,y) 

and 

(37) 

(38) 

(39) 

G(s,y) - QF(8,y)[Q1(s,y) + R(s,y)] 

H(8.y) - -QF(s,y) R(8,y) 

We now find y(8) to minimize T-ty) in (38). With an integrand (39) that is 

linear in y' the problem is easy to solve by methods from the Calculus of 

Variations. The necessary conditions of Legendre and Weierstrass are satis- 

fied. Euler's necessary condition for an extremum, 

_d / 3F\ 
ds ^y' ) 3y 

reduces to the condition 

9y " 3s 

with the integrand F in (39) that is linear in y'. This equation reduces 

to the equation 

3Qn 
wl   3y  3y  3s (AO) 
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with the simple form for Q in equation (35).  When the equations for 
F 

Q and R in (34) and (37) are used, equation (40) becomes 

2(f^1-l) e2y~8 - 2y - s + 3 + In^1-!) , 

which becomes 

2 e - u + 3 (41) 

with the change of function, 

-1 
u - 2y - s + Int^ -1) (42) 

There are two solutions of equation (41). Let u. be the positive solution, 

which is approximately u- - 0.583. The corresponding solution of equation 

(42) is 

y1(s) - i (s + ^ - Ina^-l)) (43) 

We now can show that the solution y1 (s) in equation (43) minimizes the 

integral T.(y) in equation (38) by showing that the second variation of 

the integral is tioit-negative, which is a form of Jacobi's condition. The 

second variation I" of the integral is 

I" - J (F n2 + 2 F_, nn' + F„,„1n
,2)ds!) yy yy y y 

where n ■ n(8)  is an arbitrary variation from y,(8)  that vanishes at the 

end points.    With the F functional in equation (39)  1" becomes 

I" - 4 /[(l-f^O^y') e2y"2s n2-(f1e"8 + 2(l-f1)e2y"28)^n, ]ds 

Integrating by parts and using the property that n(8) vanishes at 0 and »•, 

we have 

/" /,  ix 2y-2s 2 i   f    lyls       , . (l-y^e '   n ds - J e -^   nn ds 
0 0 

When we use this equation to eliminate y', the second variation becomes 

00 

i" - 4 /[(l-f^y-28 n2 - f^"8 nn'lds 
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-8 
Again, integrating e nn' by parts, we obtain 

I" - 2 /[2(l-f1)e
2y'28 - f1 e'

8] n2d8 

For y ■ y.Cs)  in equation (43)  I" reduces to 
00 

I" - 2f1(u   + 2)   fe"8 n2 ds, 
1  1        •'o 

for which I" >^ 0 for all n(s), with equality only for trivial r\(s). 

With the negative root u„ of equation  (4l), I" is negative,  since u- < -2. 

The corresponding function y„(8) maximizes the integral  (38).     Of course, 

it does not maximize the expected time to detection,  since the minimum 

time T2 is used in finding T1(y). 

The function y,(s) in equation  (43) is the unrestricted minimizing function. 
* 

We obtain the optimal function y (s) by imposing the restrictions 
it 

0 1. Y  (s)  <_ a.    The optimal solution depends on the value of  f..    If 

^ <   (1 + e11!)"1 ' 0.358, 

0,      0<s£-u1 + ln  (f^ -1) 

i(s + xx1- ^(f^1-!)). s > - Uj^ + In (f^1-!) 

Ul -1 If fj^ >  (1 + e i) i , 

s  ,      0 < s £ u    - In (fj^ -1) 

|(s + u1- In^-l)), s > Uj - In (f^-l) 

'l.-l We note that f - (1 + e )~ , which is less than 0.5 since ^ > 0. This 

outcome had been anticipated above in obtaining the solution in the second 

stage. Also, we note that s. - u-. 
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The complete solution Is the following: 

First Stage 

For 0 < s <_ | v^ - InCf^-Dl , 

0 , for x in I, 

1 -1 
s , for x in II, if ^ < (1 + e •L) 

s , for x in I, 

For u. 

11 Ul -1 
0 , for x in II, if ^ > (1 + e •L) 

r-l - In^ -1)| < s < Sj^ 

Y(8 + u. - InCf"1-!)) , for x in I 

^■(s " ^ + ^(f^-l)) , for x in II 

If f. ■ (1 f- e )  , the solution is simply p » -rs for all x. 

Second Stage 

For 0 < s £ u..   . 1J? ■ 

0  ,  for x in I 

s  ,  for x in II 

For s > u.. 

•^(s - u ),  for x in I 

—(s + u ),  for x in II 

In the second stage the total search time is s. + s and the total effort 
it it ■'■ 

density function is y-iCs.) + y9(s). 

We start searching in region II when f1  is less than the critical value, 

0.358,  and in region I when f-   is greater than the critical value.     The 

critical value has been changed from 0.5 with no false targets to 0.358 

by one false target in region II. 
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We can use the above method  to solve other two-cell problems.    We have 

performed the essential part of the analysis for  the cases in which there 

are 0 and 2 false targets in regions I and II,  and 1 false target in each 

region. 

With  this background, we have attempted to solve the two-cell problem in 

which there is a known number n of identically distributed false targets 

with the common density function:    g(x) = g1   for x in I,  g(x) = 1 - g1 
st for x in II.    We have written the solution for the  (n+1)      stage,   the 

n      stage, and the essential part of the  (n-1)       stage.    The general 

form of  the solution is  the same as that obtained in the example above, 

with some complications.     Thus,   in the n      stage we get an equation for 

y (s)  of the same form as 
n 

is a root of the equation 

y (s)  of the same form as  that for y, (s)   in equation  (43), but u,   (now u ) n 1 in 

f^l - g1)e
U(2eU - 3 - u) = g^l - f^ (1 - 2eU), 

which reduces to equation (41) when g1 = 0, as in the example. It ap- 

pears to be possible to write out the complete solution for this case. 

The solution will have the simple form of the solution in the example; 

that is, we search in one region exclusively or we divide the effort 

evenly between the two regions; no other division of the effort is ad- 

mitted in the optimal solution. 

If the number of false targets is not known and the distribution is known 

and finite, the solution becomes more complicated. We have examined the 

case in which p^O, p-^O, P1 = 0, 1^.2. Again, the solution has the 

general form described above. It appears to be possible to write out the 

complete solution for the two-cell problem with a finite distribution. 
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